Size of Multilayer Networks for Exact Learning: Analytic Approach

نویسندگان

  • André Elisseeff
  • Hélène Paugam-Moisy
چکیده

This article presents a new result about the size of a multilayer neural network computing real outputs for exact learning of a finite set of real samples. The architecture of the network is feedforward, with one hidden layer and several outputs. Starting from a fixed training set, we consider the network as a function of its weights. We derive, for a wide family of transfer functions, a lower and an upper bound on the number of hidden units for exact learning, given the size of the dataset and the dimensions of the input and output spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Weight space structure and internal representations: A direct approach to learning and generalization in multilayer neural networks.

We analytically derive the geometrical structure of the weight space in multilayer neural networks (MLN), in terms of the volumes of couplings associated to the internal representations of the training set. Focusing on the parity and committee machines, we deduce their learning and generalization capabilities both reinterpreting some known properties and finding new exact results. The relations...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

Optimal online learning: a Bayesian approach

A recently proposed Bayesian approach to online learning is applied to learning a rule deened as a noisy single layer perceptron. In the Bayesian online approach, the exact posterior distribution is approximated by a simple parametric posterior that is updated online as new examples are incorporated to the dataset. In the case of binary weights, the approximate posterior is chosen to be a biase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996